Permeation of Large Tetra-Alkylammonium Cations through Mutant and Wild-Type Voltage-Gated Sodium Channels as Revealed by Relief of Block at High Voltage
نویسندگان
چکیده
Many large organic cations are potent blockers of K(+) channels and other cation-selective channels belonging to the P-region superfamily. However, the mechanism by which large hydrophobic cations enter and exit the narrow pores of these proteins is obscure. Previous work has shown that a conserved Lys residue in the DEKA locus of voltage-gated Na(+) channels is an important determinant of Na(+)/K(+) discrimination, exclusion of Ca(2+), and molecular sieving of organic cations. In this study, we sought to determine whether the Lys(III) residue of the DEKA locus interacts with internal tetra-alkylammonium cations (TAA(+)) that block Na(+) channels in a voltage-dependent fashion. We investigated block by a series of TAA(+) cations of the wild-type rat muscle Na(+) channel (DEKA) and two different mutants of the DEKA locus, DEAA and DERA, using whole-cell recording. TEA(+) and larger TAA(+) cations block both wild-type and DEAA channels. However, DEAA exhibits dramatic relief of block by large TAA(+) cations as revealed by a positive inflection in the macroscopic I-V curve at voltages greater than +140 mV. Paradoxically, relief of block at high positive voltage is observed for large (e.g., tetrapentylammonium) but not small (e.g., TEA(+)) symmetrical TAA(+) cations. The DEKA wild-type channel and the DERA mutant exhibit a similar relief-of-block phenomenon superimposed on background current rectification. The results indicate: (a) hydrophobic TAA(+) cations with a molecular diameter as large as 15 A can permeate Na(+) channels from inside to outside when driven by high positive voltage, and (b) the Lys(III) residue of the DEKA locus is an important determinant of inward rectification and internal block in Na(+) channels. From these observations, we suggest that hydrophobic interfaces between subunits, pseudosubunits, or packed helices of P-region channel proteins may function in facilitating blocker access to the pore, and may thus play an important role in the blocking and permeation behavior of large TAA(+) cations and potentially other kinds of local anesthetic molecules.
منابع مشابه
Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom
Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...
متن کاملMolecular basis of proton block of L-type Ca2+ channels
Hydrogen ions are important regulators of ion flux through voltage-gated Ca2+ channels but their site of action has been controversial. To identify molecular determinants of proton block of L-type Ca2+ channels, we combined site-directed mutagenesis and unitary current recordings from wild-type (WT) and mutant L-type Ca2+ channels expressed in Xenopus oocytes. WT channels in 150 mM K+ displayed...
متن کاملPoint mutations at L1280 in Nav1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomers.
Local anesthetics (LAs) block voltage-gated sodium channels. Parts of the LA binding site are located in the pore-lining transmembrane segments 6 of domains 1, 3, and 4 (D1-S6, D3-S6, D4-S6). We suggested previously that residue N434 in D1-S6 interacts directly with bupivacaine enantiomers in inactivated channels because side-chain properties of different residues substituted at N434 correlated...
متن کاملMolecular Basis of Proton Block of L-Type Ca 2+ Channels
Hydrogen ions are important regulators of ion flux through voltage-gated Ca 2+ channels but their site of action has been controversial. To idendfy molecular determinants of proton block of L-type Ca 2+ channels, we combined site-directed mutagenesis and unitary current recordings from wild-type (WT) and mutant L-type Ca 2§ channels expressed in Xen0pus oocytes. WT channels in 150 mM K + displa...
متن کاملIon permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations
Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge-carrying arginine residues in skeletal muscle Na(V)1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only approximately 1% of central pore current, but substitution of guanidine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 115 شماره
صفحات -
تاریخ انتشار 2000